Redox buffering by melanin and Fe(II) in Cryptococcus neoformans.
نویسندگان
چکیده
Melanin is a fungal extracellular redox buffer which, in principle, can neutralize antimicrobial oxidants generated by immunologic effector cells, but its source of reducing equivalents is not known. We wondered whether Fe(II) generated by the external ferric reductase of fungi might have the physiologic function of reducing fungal melanin and thereby promoting pathogenesis. We observed that exposure of a melanin film electrode to reductants decreased the open-circuit potential (OCP) and reduced the area of a cyclic voltammetric reduction wave whereas exposure to oxidants produced the opposite effects. Exposure to 10, 100, 1,000 or 10,000 microM Fe(II) decreased the OCP of melanin by 0.015, 0.038, 0.100, and 0.120 V, respectively, relative to a silver-silver chloride standard, and decreased the area of the cyclic voltammetric reduction wave by 27, 35, 50, and 83%, respectively. Moreover, exposure to Fe(II) increased the buffering capacity by 44%, while exposure to millimolar dithionite did not increase the buffering capacity. The ratio of the amount of bound iron to the amount of the incremental increase in the following oxidation wave was approximately 1.0, suggesting that bound iron participates in buffering. Light absorption by melanin suspensions was decreased 14% by treatment with Fe(II), consistent with reduction of melanin. Light absorption by suspensions of melanized Cryptococcus neoformans was decreased 1.3% by treatment with Fe(II) (P < 0.05). Cultures of C. neoformans generated between 2 and 160 microM Fe(II) in culture supernatant, depending upon the strain and the conditions [the higher values were achieved by a constitutive ferric reductase mutant in high concentrations of Fe(III)]. We infer that Fe(II) can reduce melanin under physiologic conditions; moreover, it binds to melanin and cooperatively increases redox buffering. The data support a model for physiologic redox cycling of fungal melanin, whereby electrons exported by the yeast to form extracellular Fe(II) maintain the reducing capacity of the extracellular redox buffer.
منابع مشابه
Pathogenic roles for fungal melanins.
Melanins represent virulence factors for several pathogenic fungi; the number of examples is growing. Thus, albino mutants of several genera (in one case, mutated precisely in the melanizing enzyme) exhibit decreased virulence in mice. We consider the phenomenon in relation to known chemical properties of melanin, beginning with biosynthesis from ortho-hydroquinone precursors which, when oxidiz...
متن کاملCellular charge of Cryptococcus neoformans: contributions from the capsular polysaccharide, melanin, and monoclonal antibody binding.
Cryptococcus neoformans is a human pathogenic fungus which is unusual in two respects: it has a polysaccharide capsule similar to that found in encapsulated bacteria and it can produce melanin. Capsular and melanization phenotypes are associated with virulence. In this study we analyzed the contributions of the capsular polysaccharide, melanization, and antibody binding to the capsule to the ce...
متن کاملMelanin, melanin "ghosts," and melanin composition in Cryptococcus neoformans.
Melanin synthesis is associated with virulence for the pathogenic fungus Cryptococcus neoformans. Exposure of nonmelanized C. neoformans 4067 cells to 4 M guanidinium isothiocyanate followed by 6 M HCl at 100 degrees C resulted in complete solubilization of cellular structures. However, exposure of melanized C. neoformans 24067 to the same conditions produced a suspension of black particles. An...
متن کاملLaccase and melanin in the pathogenesis of Cryptococcus neoformans.
Cryptococcosis, caused by an encapsulated fungus, Cryptococcus neoformans, has emerged as a life threatening infection in HIV positive individuals and other immunocompromised hosts. The present review describes laccase and its product melanin as an important virulence factor of Cryptococcus neoformans and illustrates the approaches used in elucidating the pathogenesis of cryptococcosis. Charact...
متن کاملPigment Production on L-Tryptophan Medium by Cryptococcus gattii and Cryptococcus neoformans
In recent years strains previously grouped within Cryptococcus neoformans have been divided into two species C. neoformans and C. gattii, with Cryptococcus neoformans comprising serotypes A, D, and AD and C. gattii comprising serotypes B and C. Cryptococcus neoformans have also been subdivided into two varieties C. neoformans var. grubii, serotype A, and C. neoformans var. neoformans, serotype ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 179 17 شماره
صفحات -
تاریخ انتشار 1997